• → European Space Agency

      • Space for Europe
      • Space News
      • Space in Images
      • Space in Videos
    • About Us

      • Welcome to ESA
      • DG's News and Views
      • For Member State Delegations
      • Business with ESA
      • ESA Exhibitions
      • ESA Publications
      • Careers at ESA
    • Our Activities

      • Space News
      • Observing the Earth
      • Human Spaceflight
      • Launchers
      • Navigation
      • Space Science
      • Space Engineering
      • Operations
      • Technology
      • Telecommunications & Integrated Applications
    • For Public

    • For Media

    • For Educators

    • For Kids

    • ESA

    • Space Engineering

    • What we do
    • Directorate of Technical and Quality Management (TEC)
    • Electrical
    • Electrical engineering
    • Control Systems
    • Data Systems
    • Radio Frequency Payload Systems
    • Electromagnetics and Space Environment
    • Power and Energy Conversion
    • Mechanical
    • Mechanical engineering
    • Thermal Control
    • Structures and Mechanisms
    • Mechatronics and Optics, incl. robotics and life support
    • Propulsion and Aerothermodynamics
    • Systems
    • Systems and software engineering
    • Software Systems
    • Systems Engineering, incl. cost engineering
    • Technology programmes
    • Product Assurance
    • Product Assurance
    • Flight Safety
    • Dependability
    • Quality Management and Assurance
    • Materials and Processes
    • Electronic Components
    • Software Product Assurance
    • Standards
    • Requirements and standards
    • European Cooperation for Space Standardization (ECSS)
    • European Space Components Coordination (ESCC)
    • Services
    • ESA calendar of events
    • Subscribe

    ESA > Our Activities > Space Engineering

    Why is Structures and Mechanisms important?

    Herschel finite element analysis model

    Settling a launcher’s or satellite's shape is a crucial part of the overall mission design. It is dictated first by the nature of its mission but also largely by the noise and vibrations it will be put through during its first ten minutes or so of active life, as it hurtles into orbit at more than 25 times the speed of sound.

    The structure has to be light enough to be launched in the first place while also being strong and stiff enough to support the payload and endure launch loads without bending or breaking. Any structural distortion could impact the operations of telescopes, imagers or antennas precisely mounted on the satellite.

    Once in orbit the satellite structure must then be able to resist environmental factors – ensuring structures are proofed against potential impact threats as well as pyrotechnics, which are small explosives to deploy parts of the spacecraft which are kept folded away during launch.

    Moving parts are an essential part of spacecraft systems, whether they be deployment devices that only have to operate once or continuously working systems which must operate reliably for years on end. The challenge comes with the fact that microgravity and the orbital vacuum change the practicalities of movement in space.

    For moving devices to work reliably the domain takes in the specialist area of space 'tribology' – the study of how moving surfaces interact. If friction is too high then a device might seize up, or excess wear may lead to a part losing its precision. Lubrication keeps Earth-based mechanisms moving optimally but standard liquid or grease blends swiftly evaporate under vacuum conditions – specialised solid lubricants are required instead.

    Last update: 6 October 2009

    Rate this

    Views

    Share

    • Currently 0 out of 5 Stars.
    • 1
    • 2
    • 3
    • 4
    • 5
    Rating: 0/5 (0 votes cast)

    Thank you for rating!

    You have already rated this page, you can only rate it once!

    Your rating has been changed, thanks for rating!

    26
    facebook
    twitter
    reddit
    google plus
    digg
    tumbler
    digg
    blogger
    myspace
    • More information
      • Structures and Mechanisms
        • Why is Structures and Mechanisms important?
          • What innovations does Structures and Mechanisms involve?
            • What applications and missions does Structures and Mechanisms enable?
            • Learn more about...
            • Structures
            • Mechanisms

    Connect with us

    • RSS
    • Youtube
    • Twitter
    • Flickr
    • Google Buzz
    • Subscribe
    • App Store
    • LATEST ARTICLES
    • · CryoSat hits land
    • · Ariane 5 completes seven launches …
    • · Measuring skull pressure without t…
    • · Malargüe station inauguration
    • · The solar wind is swirly
    • FAQ

    • Jobs at ESA

    • Site Map

    • Contacts

    • Terms and conditions