Gravitational waves – ‘dents’ in space-time

Gravitational waves are fundamentally different from, for example, electromagnetic waves. The acceleration of electric charges creates electromagnetic waves. They propagate in the framework of space and time. However, gravitational waves, which are created by the acceleration of masses, are waves of the space-time ‘fabric’ itself.

According to Newton's theory of gravity, the gravitational interaction between two bodies is instantaneous. However, Einstein’s Special Relativity says nothing can travel faster than the speed of light. If an object changes shape as a result of a mass pulling on it, the resulting change in the force field would spread outwards at the speed of light.

In 1805, Laplace said that if gravity propagates with finite speed, the force in a binary star system should not point along the line connecting the stars, and the angular momentum of the system must slowly decrease with time.

Proof of gravity waves found

Albert Einstein, 1879 - 1955
Albert Einstein, 1879 - 1955

Today’s scientists would say that binary stars lose energy and angular momentum by emitting ‘gravitational waves’. In 1993, indirect proof was found for the existence of gravitational waves by observing the binary pulsar PSR 1913+16. However, scientists are still waiting to directly detect gravitational waves.

Forty years after Einstein’s work on gravitational waves, relativity theorists like H. Bondi proved that gravitational radiation was physically observable, that gravitational waves carry energy, and that a system that emits gravitational waves should lose energy.

General Relativity implies accepting that space and time do not have an independent existence, but rather are in intense interaction with the physical world. Massive objects produce 'dents' in the fabric of space-time. Other objects move in this curved space-time taking the shortest path, like billiard balls on a springy surface. So space-time is an ‘elastic medium’.

Elastic but stiff!

If an object changes shape asymmetrically, the space-time ‘dents’ travel outwards like ripples in space-time called 'gravitational waves'. Gravitational effects that are spherically symmetric will not produce gravitational radiation. A perfectly symmetrical collapse of a supernova will produce no waves, but a non-spherical one will emit gravitational radiation. A binary system will always radiate.

Gravitational waves distort space-time: they change the distances between large, free objects. A gravitational wave passing through the Solar System creates a time-varying strain in space that periodically changes the distances between all bodies in the Solar System (this strain changes distances perpendicularly to the direction in which the wave moves).

However, the relative change in length due to the passage of a gravitational wave is extremely small. For example, in the case of a typical white dwarf binary at a typical distance of 160 light years, it is only 10-10 metres. Measuring distances this small between objects far apart presents a challenge.

Although a supernova in a distant galaxy would bathe Earth with gravitational radiation as strong as several kilowatts per square metre, the resulting length changes will always be very small. Space-time is an elastic medium that remains stubbornly stiff!

Galactic binaries and massive black holes

Gigantic black holes

As far as ESA’s LISA mission is concerned, gravitational waves arise from two main sources: galactic binaries and the massive black holes (MBHs) which are expected to exist in the centres of most galaxies.

Observing binaries is limited to our Galaxy. LISA will be able to detect several types of galactic sources. Some galactic binaries are so well studied, especially the X-ray binary 4U1820-30, that it is one of the most reliable sources.

If LISA does not detect the gravitational waves from known binaries with the intensity and polarisation predicted by General Relativity, it would shake the very foundations of gravitational physics.

Searching for gravitational waves with LISA
Searching for gravitational waves with LISA

Learning about the formation, growth, space density and surroundings of MBHs is also very important. Scientists suspect that there are MBHs with masses of one million to 100 million times the mass of our Sun in the centres of most galaxies, including our own. Observations of signals from merging MBHs in distant galaxies would test General Relativity, and particularly black-hole theory, to unprecedented accuracy.

Last update: 28 September 2004

Copyright 2000 - 2014 © European Space Agency. All rights reserved.